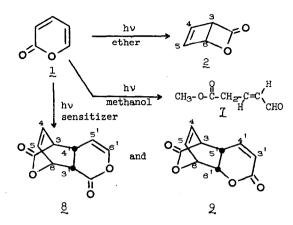

Tetrahedron Letters No.51, pp. 5279-5282, 1968. Pergamon Press. Printed in Great Britain.

THE MULTIPLICITY OF THE REACTIVE 2-PYRONE EXCITED STATES.

W. H. Pirkle and L. H. McKendry


Department of Chemistry and Chemical Engineering University of Illinois, Urbana, Illinois 61801

(Received in USA 2 August 1968; received in UK for publication 9 September 1968) The photochemistry of the 2-pyrone system is rich and varied. Corey (1) has reported that direct irradiation of 2-pyrone (1) affords bicyclo[2.2.0]pyran-2-one (2) while de Mayo (2,3) has found that direct irradiation of 4,6-dimethyl-2-pyrone in methanol affords a ring opened adduct, methyl 4-acetonylcrotonate (3) or, in benzene, affords two 4 + 4 dimers, 4 and 5, and a 2 + 2 dimer, 6, of the type generally encountered in photodimerizations of α,β unsaturated carbonyl compounds (4).

We find that irradiation (Hanovia 450 w medium pressure lamp, Corex filter) of a dilute (4 g/l) solution of 2-pyrone in ether-methanol (90:10) affords an essentially quantitative yield of the ring opened adduct, methyl <u>trans</u>-4-formyl-3-butenoate (\underline{I}). However, addition of a photosensitizer (acetophenone, 1 g/l) to a similar 2-pyrone solution and irradiation with 3600Å light affords none of the methanol adduct \underline{I} but yields instead approximately equal amounts of two 4 + 2 Diels-Alder-like dimers, <u>8</u> and 9. Such 2 + 4 dimers are comparatively rare in photochemistry (4).

Inasmuch as direct irradiation of ethereal 2-pyrone leads either to bicyclolactone $\underline{2}$ (methanol absent) or adduct $\underline{1}$ (methanol present) and neither reaction is slowed by the presence of 0.1M piperylene, it seems highly likely that $\underline{2}$ and $\underline{1}$ arise <u>via</u> 2-pyrone singlet excited states. Moreover, the demonstration that the presence of a photosensitizer prevents the formation of $\underline{2}$ and $\underline{1}$ but leads instead to photodimers $\underline{8}$ and $\underline{2}$, products not formed in the absence of the photosensitizer, seems to require that the dimers arise <u>via</u> triplet 2-pyrone excited states.

The structure of the somewhat unstable oily adduct χ follows from its infrared spectrum which shows carbonyl absorption at 5.77 and 5.93 μ , from its nmr spectrum which shows resonances at δ 9.50(d,1H), 6.96(m, 1H), 6.13(m, 1H), 3.71(s, 3H), and 3.38(q, 2H), and from its elemental composition (<u>Anal</u>. Calcd for C₆H₈O₃: C, 56.25; H, 6.25. Found: C, 55.91; H, 6.36). The location of the double bond in χ is clearly demonstrated by the doublet nature of the aldehydic resonance; the stereochemistry about this double bond follows from the observation of a 16 Hz coupling constant common to the multiplets at δ 6.13 and 6.96.

The infrared spectrum of dimer 8, mp 162° , shows but one lactone carbonyl band, 5.74μ , thus suggesting that neither carbonyl is α,β unsaturated. The 100 MHz nmr spectrum of 8 exhibits

multiplets at $\delta 6.68$ (3 H), 5.62 (1 H), 5.29 (1 H), 3.60 (1 H), 3.37 (1 H), and 2.76 (1 H). The multiplet at $\delta 6.68$ is assigned to H₄, H₅, and H₆', while the other multiplets are assigned to H₆, H₅', H₃, H₃', and H₄' respectively. When <u>8</u> is prepared from 2-pyrone-3-<u>d</u> (5) the multiplets at $\delta 3.60$ and 3.37 disappear; when prepared from 2-pyrone-5-<u>d</u> (5) area is lost from the $\delta 6.68$ multiplet and the $\delta 5.29$ multiplet is lost; when prepared from 2-pyrone-6-<u>d</u> (5) area is lost from the 6.68 multiplet and the $\delta 5.62$ multiplet disappears. These labeling studies plus double resonance experiments on the deuterated dimers allow confident assignment of the structure of <u>8</u> save for the question of whether the carboxyl bridge is <u>exo</u> or <u>endo</u> to the nonbridged ring.

Dimer 2, mp 160.5°, has an infrared spectrum showing two lactone absorptions, 5.68 and 5.81 μ , suggesting that one carbonyl is conjugated with an α,β double bond. The 100 MHz nmr spectrum of 2 (DMSO-<u>d</u>₆) shows equal area multiplets centered at 66.87, 6.74, 6.55, 5.99, 5.41, 5.03, 3.68 and 2.98. These multiplets are assigned to H₄', H₄, H₅, H₃', H₆, H₆', H₃, and H₅' respectively. When 2 is prepared from 2-pyrone-3-<u>d</u>, the multiplets at 65.99 and 3.68 are lost; 2 from 2pyrone-5-<u>d</u> has no multiplets at 66.55 and 2.98; 2 from 2-pyrone-6-<u>d</u> has no multiplets at 65.41 and 5.03. From these labeling studies the structure of 2 is confidently assigned save again for the question as to whether the carboxyl bridge is <u>exo</u> or <u>endo</u> to the nonbridged ring.

Both dimers are stable toward further irradiation; $\underline{\vartheta}$ was shown not photoequilibrate with $\underline{\vartheta}$ under reaction conditions. Moreover, while the concentration ratios of the dimers are influenced by solvent choice, the ratios in a given solvent are time invariant and are unaffected by the choice of benzophenone, acetophenone or β -acetonaphthone as the photosensitizer.

Accordingly, dimers $\underline{8}$ and $\underline{9}$ are believed to arise directly from triplet 2-pyrone rather than by rearrangement of other initially formed adducts.*

<u>Acknowledgement</u> We are grateful to the Research Corporation for supporting a portion of this research and to the National Institutes of Health for a Predoctoral Fellowship to L. H. M.

^{*}Rigorously, one can only say that any adducts which rearrange to afford dimers 8 and 2 must rearrange so rapidly that adduct concentrations detectable by 100 MHz nmr are never attained.

REFERENCES

- 1. E. J. Corey and J. Streith, <u>J. Am. Chem. Soc.</u>, <u>86</u>, 950 (1964).
- P. de Mayo, "Advances in Organic Chemistry," Vol. II, Interscience Publishers, New York, N. Y., 1960, p. 394.
- 3. P. de Mayo and R. W. Yip, Proc. Chem. Soc., 84 (1964).
- 4. See R. O. Kan, "Organic Photochemistry," McGraw-Hill, New York, N. Y., 1966, Chapter 5.
- 5. W. H. Pirkle and M. Dines, <u>J. Am. Chem. Soc</u>., <u>90</u>, 2318 (1968).